Hosting Open-WebUI Cheaply and
Securely Online with Access for
Specific Users

In the rapidly evolving landscape of artificial intelligence, the demand for
interactive and personalized chatbots has surged. Businesses and individuals alike
are seeking cost-effective, secure, and user-friendly solutions to deploy Al-powered
conversational agents. Open-WebUI, formerly known as Ollama WebUI, emerges as
a robust and versatile tool designed to meet these needs. This report delves into the
intricacies of hosting Open-WebUI cheaply and securely online, while ensuring
controlled access for specific users.

Open-WebUl is an extensible, feature-rich, and user-friendly self-hosted web
interface that supports various Large Language Model (LLM) runners, including
Ollama and OpenAl-compatible APIs. It is designed to operate entirely offline,
ensuring data privacy and control, which is crucial for users concerned about
security. The platform's intuitive interface, inspired by ChatGPT, allows for seamless
interaction with language models, making it an ideal choice for deploying Al
chatbots.

To host Open-WebUI cheaply and securely, several key considerations must be
addressed:

1. Cost-Effective Deployment: Utilizing Docker or Kubernetes for installation
simplifies the setup process and reduces costs associated with infrastructure
management. Docker provides a convenient way to package and run
applications in isolated containers, ensuring that the web Ul is isolated from
the host system and can be easily managed. For more information on Docker
installation, refer to Docker's official guide.

2. Security Measures: Ensuring the security of the hosted environment is
paramount. This includes configuring firewalls to allow incoming traffic to
designated ports, implementing role-based access control (RBAC), and using
authenticating reverse proxies to centralize user authentication. For detailed
security configurations, visit the Open-WebUI documentation.



https://docs.docker.com/get-docker/
https://docs.openwebui.com/features/

3. User Access Control: Open-WebUI supports the creation of admin and user
accounts, allowing for granular control over who can access and manage the
system. This ensures that only authorized individuals can interact with the Al
models, enhancing security and operational integrity. For more on user
management, see the Open-WebUI FAQ.

4. Scalability and Performance: Open-WebUI is designed for easy deployment
and scalability, allowing users to quickly set up and manage Al-powered
applications without the complexities of managing the underlying
infrastructure. This makes it suitable for both small-scale deployments and
larger, enterprise-level applications. For insights on scalability, refer to the
Open-WebUI GitHub repository.

By leveraging the capabilities of Open-WebUI, users can deploy and manage
language models with ease, ensuring optimal performance and a seamless user
experience. This report will guide you through the step-by-step process of setting up
Open-WebUI, configuring security measures, and managing user access, enabling
you to harness the power of Al chatbots in a cost-effective and secure manner.

Table of Contents

» Installing and Configuring Open WebUI
o Prerequisites and Initial Setup
o Downloading and Running Open WebUI
o Configuring Open WebUI
o Securing Open WebUI
o Exposing Open WebUI Online
o Updating Open WebUI
* Securing the Open WebUI Setup
o Implementing Network Security Measures
m Configuring Firewalls
m Setting Up VPNs
m Secure Communication Protocols
o Enhancing Authentication Mechanisms
m Multi-Factor Authentication (MFA)
m Strong Password Policies
o Role-Based Access Control (RBAC)
m Configuring RBAC


https://docs.openwebui.com/faq/
https://github.com/open-webui/open-webui

o Monitoring and Logging
m Setting Up Monitoring Tools
m Implementing Logging
o Regular Security Audits
m Vulnerability Scans
m Penetration Testing
m Reviewing Security Configurations
» Managing User Access and Authentication
o User Authentication Mechanisms
m Multi-Factor Authentication (MFA)
m Password Policies
o Role-Based Access Control (RBAC)
m Configuring RBAC
o User Management and Authentication Services
m Pluggable User Management Service
m Keycloak Integration
o Secure Communication Protocols
m SSL/TLS Encryption
o Monitoring and Logging
m Setting Up Monitoring Tools
m Implementing Logging
o Access Management Platforms
m Top Access Management Solutions
m Adaptive Authentication
o Conclusion

Installing and Configuring Open WebUI

Prerequisites and Initial Setup

Before installing Open WebUI, ensure that your system meets the necessary
prerequisites. This includes having Docker installed, as it simplifies the deployment
and management of Open WebUI. Docker can be downloaded from its official
website. For macOS users, Docker offers versions for both Intel and Apple's M-series

chips.

1. Install Docker: Follow the instructions on the Docker website to install Docker

on your system.


https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

2. Verify Docker Installation: Open a terminal and run the command docker
--version to ensure Docker is installed correctly.

Downloading and Running Open WebUI

Once Docker is installed, you can proceed with downloading and running Open
WebUI. The following steps outline the process:

1. Pull the Docker Image: Use the command below to pull the latest Open WebUI
Docker image: bash docker pull ghcr.io/open-webui/open-webui:main

2. Run the Docker Container: Execute the following command to run the Open
WebUI container: bash docker run -d -p 3000:8080 --add-
host=host.docker.internal:host-gateway -v open-webui:/app/
backend/data --name open-webui --restart always ghcr.io/open-
webui/open-webui:main

3. Access Open WebUI: Open your web browser and navigate to http://localhost:

3000. The first time you access Open WebUI, you will need to create an
administrator account.

Configuring Open WebUI

After successfully installing Open WebUI, you can configure it to suit your needs.
This includes setting up user accounts, customizing settings, and enabling advanced
features.

1. Create User Accounts: Navigate to the user management section in the admin
panel to create additional user accounts. This allows multiple users to access
and interact with Open WebUI

2. Customize Settings: Open WebUI offers various customization options,
including theme settings (light/dark mode) and personalization features.
Access these settings through the admin panel.

3. Enable Memory Feature: The Memory feature allows the system to recall
personal details and past interactions. Enable this feature by navigating to
Settings > Personalization > Memory.


http://localhost:3000
http://localhost:3000

Securing Open WebUI

Security is a critical aspect of running Open WebUI, especially when exposing it to
the internet. Implementing robust security measures ensures that your data and
user interactions remain protected.

1. Use an Authenticating Reverse Proxy: Open WebUI does not natively support
federated authentication schemes like SSO, OAuth, SAML, or OIDC. However,
you can configure it to delegate authentication to an authenticating reverse
proxy. This setup centralizes user authentication and enhances security. For
more information, refer to the Federated Authentication Support.

2. Role-Based Access Control (RBAC): Open WebUI supports RBAC, allowing you
to restrict access based on user roles. Only authorized individuals can access
certain features, such as model creation and pulling rights, which are reserved
for administrators. More details can be found in the Open WebUI

documentation.

3. SSL/TLS Encryption: To secure data transmission, configure SSL/TLS
encryption. This can be achieved by setting up a reverse proxy with SSL/TLS
support, such as Nginx or Apache, in front of Open WebUI.

Exposing Open WebUI Online

To make Open WebUI accessible over the internet, you can use services like
Cloudflare to expose your local instance securely.

1. Set Up Cloudflare Tunnel: Cloudflare Tunnel allows you to securely expose
your local web server to the internet without opening ports on your router.
Follow the instructions on the Cloudflare Tunnel documentation to set up a

tunnel.

2. Configure DNS: Once the tunnel is set up, configure your DNS settings to point
to the Cloudflare Tunnel. This ensures that users can access Open WebUI using
a custom domain name.

3. Enable HTTPS: Cloudflare provides free SSL certificates, which can be used to
enable HTTPS for your domain. This adds an additional layer of security by
encrypting data transmitted between users and Open WebUI.


https://docs.openwebui.com/features/
https://docs.openwebui.com/features/
https://docs.openwebui.com/features/
https://developers.cloudflare.com/cloudflare-one/connections/connect-apps/

Updating Open WebUI

Keeping Open WebUI up-to-date is essential for accessing the latest features and
security patches. The update process varies depending on whether you are using a
direct installation or a Docker-based setup.

1. Updating Docker-Based Installation:

o Pull the Latest Docker Image: bash docker pull ghcr.io/open-
webui/open-webui:main

o Stop and Remove the Existing Container: bash docker stop open-
webui docker rm open-webui

o Create a New Container with the Updated Image: bash docker run -
d -p 3000:8080 --add-host=host.docker.internal:host-
gateway -v open-webui:/app/backend/data --name open-webui
--restart always ghcr.io/open-webui/open-webui:main

2. Using Watchtower for Automatic Updates: Watchtower can monitor your
Open WebUI container and automatically update it to the latest version.

o Run Watchtower as a Persistent Service: bash docker run -d --
name watchtower --volume /var/run/docker.sock:/var/xrun/
docker.sock containrrr/watchtower open-webui

3. Updating Direct Installation:

o Pull the Latest Changes: bash cd path/to/open-webui/ git pull
origin main
o Update Project Dependencies:
m For Node.js (Frontend): bash npm install npm run build
m For Python (Backend): bash cd backend pip install -r
requirements.txt -U
o Restart the Backend Server: bash bash start.sh

By following these steps, you can ensure that your Open WebUI installation remains
secure, up-to-date, and accessible to authorized users. For more detailed
instructions, refer to the Open WebUI documentation.



https://docs.openwebui.com/getting-started/updating/

Securing the Open WebUI Setup

Implementing Network Security Measures

To ensure the security of your Open WebUI setup, it is crucial to implement robust
network security measures. This includes configuring firewalls, setting up Virtual
Private Networks (VPNs), and using secure communication protocols.

Configuring Firewalls

Firewalls act as a barrier between your internal network and external threats.
Configure your firewall to allow only necessary traffic to and from the Open WebUI
server. This can be achieved by setting up rules that permit traffic on specific ports
used by Open WebU]I, such as port 3000 for HTTP access.

« Example Firewall Rule: bash sudo ufw allow 3000/tcp sudo ufw
enable

Setting Up VPNs

Using a VPN can add an extra layer of security by encrypting the data transmitted
between users and the Open WebUI server. This is particularly useful if you need to
access Open WebUI from remote locations.

* OpenVPN Setup: OpenVPN is a popular choice for setting up a secure VPN.
Follow the OpenVPN installation guide to configure a VPN for your Open
WebUI server.

Secure Communication Protocols

Ensure that all communications between users and the Open WebUI server are
encrypted. This can be achieved by configuring SSL/TLS encryption.

» SSL/TLS Configuration: Use a reverse proxy like Nginx or Apache to handle

SSL/TLS encryption. Refer to the Nginx SSL configuration guide for detailed
instructions.


https://openvpn.net/vpn-server-resources/installation-guide-for-openvpn-connect-client-on-windows/
https://nginx.org/en/docs/http/configuring_https_servers.html

Enhancing Authentication Mechanisms

While Open WebUI supports basic authentication mechanisms, enhancing these
mechanisms can significantly improve security. This includes integrating multi-
factor authentication (MFA) and using strong password policies.

Multi-Factor Authentication (MFA)

MFA adds an additional layer of security by requiring users to provide two or more
verification factors. This can be integrated with Open WebUI through an
authenticating reverse proxy.

» Example MFA Setup: Use Authy or Google Authenticator for MFA. Configure

your reverse proxy to require MFA before granting access to Open WebUI.

Strong Password Policies

Implementing strong password policies ensures that user accounts are protected
against brute-force attacks. Enforce the use of complex passwords and regular
password changes.

» Password Policy Example:
o Minimum length: 12 characters
o Must include uppercase, lowercase, numbers, and special characters
o Password expiration: 90 days

Role-Based Access Control (RBAC)

RBAC is a critical feature for securing Open WebUI by restricting access based on
user roles. This ensures that only authorized individuals can access specific features
and data.

Configuring RBAC

Open WebUI supports RBAC, allowing you to define roles and assign permissions
accordingly. This can be configured through the admin panel.

* Example RBAC Configuration:
o Admin Role: Full access to all features, including model creation and
pulling rights.


https://authy.com/
https://support.google.com/accounts/answer/1066447?hl=en

o User Role: Limited access to basic features, such as interacting with
models.

Refer to the Open WebUI documentation for detailed instructions on configuring
RBAC.

Monitoring and Logging

Continuous monitoring and logging are essential for detecting and responding to
security incidents. Implementing robust monitoring and logging mechanisms can
help you identify and mitigate potential threats.

Setting Up Monitoring Tools

Use monitoring tools like Prometheus and Grafana to keep track of the performance
and security of your Open WebUI setup.

* Prometheus Setup: Follow the Prometheus installation guide to set up

monitoring for your Open WebUI server.
» Grafana Integration: Integrate Grafana with Prometheus for visualizing
monitoring data. Refer to the Grafana setup guide for detailed instructions.

Implementing Logging

Enable logging for all activities on the Open WebUI server. This includes access logs,
error logs, and application-specific logs.

» Example Logging Configuration: bash sudo nano /etc/nginx/
nginx.conf # Add the following lines to enable access and
error logging access_log /var/log/nginx/access.log; error_log
/var/log/nginx/error.1log;

Regular Security Audits

Conducting regular security audits helps identify vulnerabilities and ensure
compliance with security best practices. This includes performing vulnerability
scans, penetration testing, and reviewing security configurations.


https://docs.openwebui.com/features/
https://prometheus.io/docs/introduction/first_steps/
https://grafana.com/docs/grafana/latest/getting-started/getting-started-prometheus/

Vulnerability Scans

Use tools like Nessus or OpenVAS to perform regular vulnerability scans on your

Open WebUI server.

» Example Vulnerability Scan: bash sudo apt-get install openvas sudo
openvas-setup sudo openvas-start

Penetration Testing

Conduct penetration testing to identify and exploit potential vulnerabilities. This
can be done using tools like Metasploit or Burp Suite.

« Example Penetration Test: bash sudo apt-get install metasploit-
framework msfconsole

Reviewing Security Configurations

Regularly review and update your security configurations to ensure they align with
the latest security best practices. This includes updating firewall rules, reviewing
user roles, and ensuring that all software components are up-to-date.

By implementing these security measures, you can ensure that your Open WebUI
setup remains secure, even when exposed to the internet. For more detailed
instructions and best practices, refer to the Open WebUI documentation.

Managing User Access and Authentication

User Authentication Mechanisms

Implementing robust user authentication mechanisms is crucial for securing access
to Open WebUI. This section will explore various methods to authenticate users
effectively.

Multi-Factor Authentication (MFA)

Multi-Factor Authentication (MFA) adds an extra layer of security by requiring users
to provide two or more verification factors to gain access. This can include
something the user knows (password), something the user has (security token), or
something the user is (biometric verification). According to Expert Insights, 60% of



https://www.tenable.com/products/nessus
https://www.openvas.org/
https://www.metasploit.com/
https://portswigger.net/burp
https://docs.openwebui.com/
https://expertinsights.com/insights/top-user-authentication-and-access-management-solutions/

large enterprises and 80% of SMBs are expected to use MFA by 2023. Implementing
MFA in Open WebUI can significantly reduce the risk of unauthorized access.

Password Policies

Strong password policies are essential to ensure that user credentials are not easily
compromised. Policies should enforce the use of complex passwords, regular
password changes, and account lockout mechanisms after multiple failed login
attempts. This can be configured within the user management settings of Open
WebUL

Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a method of restricting system access to
authorized users based on their roles. This ensures that users only have access to
the resources necessary for their role, minimizing the risk of unauthorized access.

Configuring RBAC

RBAC can be configured through the admin panel of Open WebUI. Administrators
can define roles and assign permissions accordingly. For example, an admin role
may have full access to all features, while a user role may have limited access to
basic features. Detailed instructions for configuring RBAC can be found in the Open
WebUI documentation.

User Management and Authentication Services

Integrating a user management and authentication service can streamline the
process of managing user access and enhance security.

Pluggable User Management Service

A pluggable user management service, such as the one described by Maxime
Moreillon, can be easily integrated into Open WebUI. This service typically includes
a MongoDB database to store user information, a user management service to
interact with the database, and an authentication module to handle user login and
access control.


https://github.com/open-webui/open-webui
https://github.com/open-webui/open-webui
https://moreillon.medium.com/a-pluggable-user-management-and-authentication-service-for-web-applications-a6f23ae5816b
https://moreillon.medium.com/a-pluggable-user-management-and-authentication-service-for-web-applications-a6f23ae5816b

Keycloak Integration

Keycloak is an open-source Identity and Access Management (IAM) solution that
simplifies user authentication and access management. By integrating Keycloak
with Open WebUI, administrators can leverage features such as single sign-on (SS0O),
social login, and centralized user management. The Keycloak JavaScript adapter

makes it easy to integrate Keycloak into web applications.

Secure Communication Protocols

Ensuring secure communication between users and the Open WebUI server is vital
to protect sensitive data.

SSL/TLS Encryption

SSL/TLS encryption can be configured using a reverse proxy like Nginx or Apache.
This ensures that all data transmitted between users and the server is encrypted,
preventing eavesdropping and man-in-the-middle attacks. Detailed instructions for
setting up SSL/TLS encryption can be found in the Nginx SSL configuration guide.

Monitoring and Logging

Monitoring and logging user activities are essential for detecting and responding to
security incidents.

Setting Up Monitoring Tools

Monitoring tools can help administrators track user activities and identify potential
security threats. Tools like Prometheus and Grafana can be used to monitor system
performance and user interactions with Open WebUI. These tools provide real-time
alerts and detailed reports, enabling administrators to take prompt action in case of
suspicious activities.

Implementing Logging

Logging all activities on the Open WebUI server, including access logs, error logs,
and application-specific logs, is crucial for auditing and forensic analysis. Logs
should be stored securely and regularly reviewed to detect any anomalies. An
example logging configuration for Nginx can be found in the Nginx documentation.



https://inteca.com/identity-access-management/keycloak-javascript-simplifying-authentication-and-access-management-for-modern-web-applications/
https://nginx.org/en/docs/http/configuring_https_servers.html
https://nginx.org/en/docs/http/ngx_http_log_module.html

Access Management Platforms

Access management platforms provide a comprehensive solution for managing user
access and authentication.

Top Access Management Solutions

According to Expert Insights, some of the top user authentication and access

management solutions include Okta, Microsoft Azure Active Directory, and Google
Identity Platform. These platforms offer features such as adaptive authentication,
single sign-on (SSO), and detailed access control policies, making them suitable for
securing Open WebUL.

Adaptive Authentication

Adaptive authentication dynamically adjusts the authentication process based on
the user's behavior and context. For example, if a user logs in from an unusual
location or device, additional verification steps may be required. This enhances
security by making it harder for attackers to gain unauthorized access.
Implementing adaptive authentication in Open WebUI can be achieved through
integration with access management platforms that support this feature.

Conclusion

By implementing robust user authentication mechanisms, configuring RBAC,
integrating user management services, ensuring secure communication protocols,
and utilizing access management platforms, administrators can effectively manage
user access and authentication in Open WebUI. These measures not only enhance
security but also provide a seamless and user-friendly experience for all users.

References

* https://repocloud.io/details/?app id=271

e https://moreillon.medium.com/a-pluggable-user-management-and-

authentication-service-for-web-applications-a6f23ae5816b

* https://backendless.com/feature/user-management/

* https://docs.openwebui.com/category/-tutorial/

* https://bhavikjikadara.medium.com/open-webui-unveiled-installation-and-
configuration-8683edal14128



https://expertinsights.com/insights/top-user-authentication-and-access-management-solutions/
https://repocloud.io/details/?app_id=271
https://moreillon.medium.com/a-pluggable-user-management-and-authentication-service-for-web-applications-a6f23ae5816b
https://moreillon.medium.com/a-pluggable-user-management-and-authentication-service-for-web-applications-a6f23ae5816b
https://backendless.com/feature/user-management/
https://docs.openwebui.com/category/-tutorial/
https://bhavikjikadara.medium.com/open-webui-unveiled-installation-and-configuration-8683eda14128
https://bhavikjikadara.medium.com/open-webui-unveiled-installation-and-configuration-8683eda14128

* https://expertinsights.com/insights/top-user-authentication-and-access-

management-solutions/

* https://inteca.com/identity-access-management/keycloak-javascript-

simplifying-authentication-and-access-management-for-modern-web-

applications/
* https://www.youtube.com/watch?v=oMU00csM4EM
* https://docs.openwebui.com/

* https://noted.lol/ollama-openwebui/

* https://www.baeldung.com/cs/authentication-web-apps

* https://github.com/open-webui/open-webui



https://expertinsights.com/insights/top-user-authentication-and-access-management-solutions/
https://expertinsights.com/insights/top-user-authentication-and-access-management-solutions/
https://inteca.com/identity-access-management/keycloak-javascript-simplifying-authentication-and-access-management-for-modern-web-applications/
https://inteca.com/identity-access-management/keycloak-javascript-simplifying-authentication-and-access-management-for-modern-web-applications/
https://inteca.com/identity-access-management/keycloak-javascript-simplifying-authentication-and-access-management-for-modern-web-applications/
https://www.youtube.com/watch?v=oMU00csM4EM
https://docs.openwebui.com/
https://noted.lol/ollama-openwebui/
https://www.baeldung.com/cs/authentication-web-apps
https://github.com/open-webui/open-webui

	Hosting Open-WebUI Cheaply and Securely Online with Access for Specific Users
	Table of Contents
	Installing and Configuring Open WebUI
	Prerequisites and Initial Setup
	Downloading and Running Open WebUI
	Configuring Open WebUI
	Securing Open WebUI
	Exposing Open WebUI Online
	Updating Open WebUI

	Securing the Open WebUI Setup
	Implementing Network Security Measures
	Configuring Firewalls
	Setting Up VPNs
	Secure Communication Protocols

	Enhancing Authentication Mechanisms
	Multi-Factor Authentication (MFA)
	Strong Password Policies

	Role-Based Access Control (RBAC)
	Configuring RBAC

	Monitoring and Logging
	Setting Up Monitoring Tools
	Implementing Logging

	Regular Security Audits
	Vulnerability Scans
	Penetration Testing
	Reviewing Security Configurations


	Managing User Access and Authentication
	User Authentication Mechanisms
	Multi-Factor Authentication (MFA)
	Password Policies

	Role-Based Access Control (RBAC)
	Configuring RBAC

	User Management and Authentication Services
	Pluggable User Management Service
	Keycloak Integration

	Secure Communication Protocols
	SSL/TLS Encryption

	Monitoring and Logging
	Setting Up Monitoring Tools
	Implementing Logging

	Access Management Platforms
	Top Access Management Solutions
	Adaptive Authentication

	Conclusion

	References


